REDUCTIO AD ABSURDUM
Armahedi Mahzar (c) 2011Bagian 6: Ikhtisar Simplifikasi Logika
Rangkaian blog Reductio ad Absurdum mengisahkan kisah pencarian sistem aksioma aljabar logika Boole yang tersederhana: baik oleh manusia semata, maupun dengan bantuan komputer.
Berikut ini adalah ringkasan blog-blog yang telah diposting sebelum ini. Tujuan dari ringkasan ini adalah memetakan perjalanan sejarah manusia untuk mengaksiomakan logika seekonomis mungkin.
Untuk bisa membandingkan berbagai aksioma yang secara signifikan maka saya di sini akan menyeragamkan perumusan aksioma tunggal itu dengan menggunakan simbolisasi Sheffer yang mendefinisikan operasi-operasi aljabar lain dengan satu operasi logika dasar yang menggabungkan TIDAK dengan DAN atau ATAU menjadi TIDAN alias NAND atau TATAU alias NOR yang disimbolkan oleh |.
Merumuskan Aksioma Logika
Dalam blog Reductio ad Absurdum bagian 1 dan bagian 2 diceritakan bagaimana logika yang ditemukan oleh Aristoteles dialjabarkan oleh George Boole dan kemudian aljabar Boole diaksiomakan berujung pada sistem aksioma Principia Mathematica yang merupakan linierisasi sistem simbolisasi planar Gotlobb Frege.Dalam aksiomatisasi linier logika ini Russel-Whitehead mengambil dua operasi logika, yaitu TIDAK dan ATAU, sebagai operasi fundamental. Akan tetapi dalam perumusan aksioma-aksiomanya, Russel dan Whitehead menggunakan operasi gabungan JIKA x MAKA y yang didefinisikannya sebagai TIDAK(x) ATAU y.
Menyederhanakan Aksioma Logika
Dalam blog Reductio ad Absurdum bagian 3 ditunjukkan bagaimana usaha manusia untuk menyederhanakan aljabar Boole. Dimulai dengan Sheffer, matematikawan Amerika Serikat, yang menyederhanakan aksioma logika Russell-Whitehead , keduanya filsuf Inggris, dalam buku mereka Principia Mathematica.Lalu matematikawan Perancis, Jean Nicod, pada tahun 1917 menurunkan semua Aksioma Sheffer dari sebuah aksioma tunggal dengan 5 variabel dan 11 operasi.
Tigabelas tahun kemudian, matematikawan Polandia Jan Lukasiewicz pada tahun 1931 menyederhanakan aksioma Nicod menjadi sebuah aksioma yang mengandung 4 variabel dan 11 operasi | atau NOR.
Kebuntuan Usaha Manusia
Dalam blog Reductio ad Absurdum bagian 4 dikisahkan bagaimana manusia mengalami kebuntuan untuk menyederhanakan aljabar Boole dengan hanya menggunakan operasi ATAU dan TIDAK.Pada tahun 1933 Huntington menyederhanakan aksiomatisasi aljabar logika dengan menggunakan dua operasi fundamental yaitu ATAU dan TIDAK dengan tiga aksioma yaitu komutativitas, asosiativitas dan sebuah identitas logika yang kemudian disebut sebagai aksioma Huntington.
Muridnya pada tahun yang sama mengusulkan untuk mengganti aksioma Huntington dengan sebuah aksioma yang lebih sederhana yaitu aksioma Robbins. Namun sayang dia tak bisa membuktikan bahwa sistem aksioma baru itu merupakan basis bagi aljabar logika Boole.
Selama puluhan tahun, berbagai matematikawan dan logikawan berusaha untuk membuktikan kebenaran dugaan Robbins tersebut, namun selalu berujung pada kegagalan. Baru pada tahun 1996 William McCune berhasil membuktikan kebenaran dugaan Robbins itu dengan bantuan komputer.
Komputer Menuntaskan Penyederhanaan
Dalam blog Reductio ad Absurdum bagian 5 dikisahkan bagaimana komputer berhasil menuntaskan upaya penyederhanaan aljabar Boole. Misalnya William McCune pada tahun 2000 dengan bantuan komputer menemukan aksioma tunggal yang jika disingkat, dengan cara menuliskan NOR atau (x+y)' sebagai (x|y), mengandung 4 variabel, 6 operasi | dan 1 operasi '='
Namun berdasarkan daftar hasil komputasi Stephen Wolfram, yang menggunakan program Mathematica ciptaannya, McCune pada tahun 2000, dengan menggunakan program Otten ciptaannya, akhirnya dapat membuktikan identitas Wolfram itu adalah aksioma tunggal, bagi aljabar Boole, yang mengandung 3 variabel, 6 operasi | dan 1 operasi '='. Namun sayang identitas Wolfram bagi saya tidak mempunyai makna yang intuitif.
Kesimpulan sementara
Ternyata komputer sangat berguna untuk memecahkan masalah penyederhanaan aksiomatik logika sehingga pada akhirnya menemukan aksioma tersederhana bagi Aljabar Logika Boole.Kenyataan ini seolah mengatakan pada kita bahwa komputer lebih hebat daripada manusia dalam penyelesaian masalah matematika, bukan hanya yang praktis numerik, tetapi juga yang abstrak teoritis non-numerik. Apakah memang betul demikian?
Blog-blog berikut akan mencoba menunjukkan bahwa kenyataan yang sebenarnya adalah kebalikannya. Aksioma Robbins ternyata akan menjadi aksioma tunggal jika kita merumuskan aljabar Boole dalam bentuk simbolisasi planar. Aksioma ini bahkan lebih sederhana lagi daripada aksioma Wolfram yang ditemukan komputer. Lebih dari itu, aksioma Robbins ini adalah simbolisasi dari sesuatu yang intuitif: reductio ad absurdum.