REDUCTIO AD ABSURDUM
Bagian 1
Salah satu cara untuk membuktikan suatu pernyataan adalah dengan menunjukkan bahwa penyangkalan atau negasi pernyataan tersebut menyebabkan suatu pertentangan alias kontradiksi. Cara pembuktian seperti ini dalam tradisi logika abad pertengahan disebut sebagai "reductio ad absurdum"
Saya sudah lama mengetahui teknik pembuktian seperti itu karena anak SMP di zaman dulu diajari ilmu ukur dan Euklides
Tentu saja waktu itu saya tak mengetahui nama Latin dari metoda tersebut. Belakangan saya mengenal metoda itu dari pembuktian tentang adanya Tuhan menurut St. Anselmus
Nah, ketika saya belajar logika modern yaitu logika Boole saya sudah lupa akan metoda itu, dan saya jatuh cinta pada logika Boole
Salah satu prinsip lain selain prinsip simetri adalah prinsip ekonomi dalam satu ilmu. Jika ada dua buah teori, untuk menjelaskan berbagai peristiwa, yang satu lebih sedikit pengertian dasarnya dibanding teori yang lain, maka teori yang pertama disebut lebih ekonomis. Teori yang ekonomis lebih disukai ketimbang teori yang kompleks.
Geometri Euklides adalah sebuah sistem matematika yang ekonomis. Semua hubungan geometris yang benar dapat dibuktikan secara logis sebagai konsekuensi dari hanya lima buah pernyataan intuitif yang disebut aksioma. Sistem aksioma Euklides adalah model bagi matematika lainnya. Misalnya, Giuseppe Peano
Dalam rangkaian artikel berikut ini saya akan menceritakan jalan bahwa upaya mengaksiomakan aljabar logika yang ditemukan oleh Boole yang ternyata berujung pada sebuah sistem aksiomatika paling ekonomis yang hanya memiliki sebuah satu operasi tunggal dan satu aksioma tunggal yang bisa diinterpretasikan sebagai reductio ad absurdum.
No comments :
Post a Comment